Intelligent Tools for Planning Knowledge base
Development and Verification

Steve A. Chien*

Jet Propulsion Laboratory, Califor nia Institute of Technology
4800 Oak Grove I Jrive, 1\4/5 525-3660, Pasadena, CA 91109-8099
steve. chien @jpl.nasa. gov

Abstract. A key obstacle hampering fielding of Al planning applica-
tions is the considerable expense of developing, verifying, updating, and
maintaining the planning knowledge base (KB). Planning systems must
be able to compare favorably in terms of software lifecycle costs to other
means of autornation sucl I as scripts or rule-based expert systeins. Con-
sequently, ia order to field real systems, planning practitioners must be
able to provide: 1. 1ools to allow domain exp erts to create and debug their
own planning kuowledge bases; 2. tools {o1r software verification, valida-
tion, and testing; and 3. tools to facilitate updates and maintenance of
the planning knowledge base. T'his paper describes two types of tools for
planning knowledge base development: static KB analysis techniques to
delect certain classes of syntactic errorsin a planning knowledge basc;
and completion analysis techniques, to interactively debug the planning
knowledge base. We describe these knowledge development tools and
describe empirical results documenting the usefulness of these tools.

1 1 ntroduction

A key bottleneck in applying Al planning techiniques to a real-world problam is
the amount of effort required to construct, debug, verify, and update (inaintain)
the planning knowledge base. In particular, plauning systems must be able to
compare favorably in terms of software lifecycle costs to other means of automa-
tion such as scripts or rule-based expert systemns. An iimportant component to
reducing such costs is to provide a good environment for developing planning
knowledge bases. Despite this situation, relatively little effort. has been devoted
to developing an integrated set of tools to facilitate constructing, debugging, ver-
ifying, and updating specialized knowledge strut.turcs used by planming systems.

While considerable rescarch has focused on knowledge acquisition systeins
for rule-bHased expert systems [5] , and object-oriented /inheritance knowledge
bases with procedures and methods [8], little work has focused on knowledge
acquisition for specialized planning representations. Notable exceptions to this
statement are [G] which uses inductive learning caprabilities and a simulator to
refine planning operators and [18] which uses expert traces to learn and a simula-
tor to refine planuing operators. However, in many cases a simulation capability

* This work was perforined by the Jet | 'ropulsionl.aboratory, California Institute of
Technology, under contract with the National Aer onautics and Space Administration.

isnot available. In these situ ationis the user needs assistance in causaly tracing
errors and debugging from a single examnple). This assistance is sorely needed
to cnable domain experts to write and debug domain theories without relying
on Al people. Furthermore, plauning knowledge base maintenance is often over-
looked. Such tools are aso invaluablein tracking smaller bugs, verifying KB
coverage 2 and updating the KB as the domain changes. While these tools can
draw much from causal tracking tecliniques usedin ruk-based systemns [5], there
arc severa aspects of planning systeis which differentiate them from rule-based
systems - their specialized representations and their temporal reasoning capabil-
itics. Two specialized representations for planning are prevalent - task reduction
rules and planning operators. ‘J 'hese representations as well as the most com-
mon constraints (ordering and codesignation constraints) have evolved so that
specialized reasoning algorithms must be adapted to support debugging,.

Many types of knowledge encoding errors can occur: incorrectly defined pre-
conditions, incorrectly defined effects, and incorrect variable specifications. In-
variably the endresult is a mismatch between the planners model of the legality
of a planand the mode] dictated by the domain (or domain expert). Thus,
the end symptoms of a knowledge base error can be broadly classified into two
categories.

Incorrect Plan Generation: This occurs when the planner is presented a prob-
lem and generates a plan which does not achieve the goals in the current problem
context. Inour experience, the current problemn and faulty solution can focus at-
tention in debugging the flaw in the knowledge Last. By using the faulty plan
to direct the debugging process, the user can often focus on the incorrect, linkin
the plan (faulty protection or achicvement) - allowing, for rapid debugging,.

Failureto Generate a Plan: This occurs when the planner is presented with a
solvable problem, but the planner is unable to find a solution. in our experience
this type of failure is farmore dificalt to debug. This is because the user dots
not have a particular plan to use to focus the debuggiug process. Thus, often a
user would manually write down a valid plan based on their mental model of the
domain, and then trace: through the steps of the plan to verify that the plan could
be constructed. 1 3ccause our expericnce has been that detecting and debugging
failom-to-generate-a-ldal] cases has been more diflicult, our work focuses on: 1.
verifying that a doinain theory can solve all solvable problems; and 2. facilitating
debugging of cases where the domain theory dots not. allow solution of a problemn
deemed solvable by the domain expert.

This paper describes two types of tools developed to assist in developing,
planning knowledge bascs - static analysis teds and completion analysis toox.
Static analysis tools analyze the domain knowledge rules and operators to see
if certain goals can 01 cannot be inferred. However, because 0f computational
tractability issues, these checks must be limited. Static analysis tools are useful
indetecting Situations in which afaulty knowledge Last causes a top-level god

*Ior work in verifying rule- based systerns - sce [13]. For work onrule base refincinent
using training examples (the analog uc of a simulator for planning KB refincment)
see [9] ,

or operator precondition to be unachievabile - frequently due to omission of an
operator effect or a typographical error.

Jompletion analysis tools operate a planning time and allow the planmer
to complete plans which can achieve al but afew focused subgoalsor top-level
goals. Completion analysis tools are uscful in cascs where @ faulty knowledge
base docsnot allow a planto be constructed for a problem that the domain
expert believes is solvable. In the case where the completion analysis tool allows
a plan to be formed by assuming goals true, the domain expert can then be
focused on these goals as preventing the plan from being generated.

The static analysis and completion analysis tools have been developed in re-
sponse to our experiences in developing and refining the knowledge base for the
Multimission VICAR Planner (NIV]") [1, 2] system, which automatically gen-
crates VICAR image processing seripts from specifications of image processing
goals. The MVP system was initially used in December 1 993, and has beenin
routine usc since May 1994. The tools describyed in this paper were driven by our
considerable efforts in knowledge base development, debugging, and updates to
the modest sired knowledge base for MVP.

The remainder of this paper is organized as follows. Section 2 outlines the
two planning representations we support: t ask reduction rules and operators.
Section 2 adso briefly describes how these representations are used in planning.
Section 3 describes gtatic analysis rules for assisting in planning KB verification
and development. Section 4 describes completion analysis rules for assisting in
planning KB development.

2 VICAR Image Processing

We describe the static apd completion analysis tools within the context Of the

Multimission VICAR Planner system, a ficlded Al planning systemn which auto-
mates certain types of image processing . MV uses both task reduction and
operat or-based methods in planning. However, the two paradigins are separate,
in that MV1' first performs task reduction (also caled hierarchical task network
or HTN planning) and then performs 0p erator-based planning. all Of the task
reduction occurs at the higher conceptual level andthe gmator-based wnethods
at the lower level®. Consequently, MVP uses two main types of knowledge to
construct image processing plans (scripts):

decomposition rules - to specify how problems are to be decomposed into
lower level subproblems; and

$We only briefly describe the MVDP application due to space constraints. For further
informationonthisapplication area, M/ ' aichitecture, and knowledge representa-
tion see [1, 2].

‘MVP first uses task reduction [1 1] planning techniques to perform high level strategic
classification and decomposition of the problem then uses traditional operator-based
[15] planning paradigms to plan at the lower level

- operators - to specify how VICAR programs can be used to achieve lower

level image processing goas (produced by 1 above I a .
. se also specify |
V] CAR programs interact.). Thesc spectly iow

These two types of knowledge structures arc described in further detail below.

A key aspect of MVP’s integration of task reduction and operator-based
planming is that first task reduction is performed, then operator-based planning.
Because of the order in which these are performed, these two types of knowledge

can be chiecked separately.®

2.1 Task Reduction Planning in MVP

MVP uses a task reduction appiroach to planning, In a task reduction approach,
reduction rules dictate how in plan-space planning, one plan can be legally trans-
formed into another plan. The planner then searches the plan space defined by

these reductions. Syntactically, a task reduction rule is of the form:

L‘}IS' N) RIS

(:] = initial gf)al set/actiolls GR:=1educed goal set/actiolls
C0 = constraints = Cl = constrain its

C2 = context N = notes 011 decomposition

This Ink! states that asct Of goals or actions GI can be reduced to a new sct
of goals or actions GR if the set of constraints C0 is satisfied in the current
plan and the context C2 is satisfied in the current plan provided the additional
constraints Clare added to the plan. CO and C1 are constraint forms which
specify conjuncts of constraints, cach of which may be a codesignation constraint
on variables appecaring in the plau, an ordering constraint on actions or goal
achievements in the plan, a not-present. constraint (which is satisfied only if the
activity or goal specified does not appear in the plan and never appcearedin the
derivation of the plan),a present constraint (which is satisfied only if the activity
or goal specified did appear in the plan or derivation of the plan), or a protection
constraint (which specifics that a goal o1sct of goals cannot be invalidated during
a specified temporal interval. Skeletal planning[10] is a technique in which a
problem is identified as one of a general class of problemn. This classification is
then usc(l to choose a particular solution method. Skeletal planning in MVP is
implemented in by encoding decomposition rules which allow for classification
and initial decomposition of a set of goals corresponding to a VICAR p roblem
class. The LHS of a skeletal decompositionrule in MVP corresponds to a set of
conditions specifying a problem class, and the RHS specifies an initial problem
decomposition for that problem class.

MVP dso uses decomposition rules to implement hicrarchical planning,. Hier-
archical plauning [1 7] is an approach to planning where abstract goals or proce-
dures are incrementally refined into more and more specific goals or procedures

°A more recently developed planner [3, 4] completely integrates these two plauning
paradigms. While natural extensions of static and completion analysis to thisinte-
grated planning approach exist, we have not as of yet explored such possibilitics,

:preconditions
the project of Zinfile inust be galileo
the data in ?infile must be raw data values

:eflects
rescaus are not intact for 7infile
the data in 7infile is not raw data values
missing lines are not filled in for 7infile
Zinfile is radiometrically corrected
tlie image format for 7infile is halfword
7infile has blenishes-removed

if (UBWC option is selected) then Tinfile is uneven bit weight corrected
if (CALCoptionis sclected) then ?infile has entropy values calculated

2.3 Different Tool Types and Representations

Inorder to facilitate this key process of knowledge acquisition and refinement
we have been developing a sct of knowledge-base editing and analysis tools.
These tools can be categorized into two general types: (1) static knowledge base
analysis tools; and (2) completion analysis tools. Because MVY uses two types of
kuowledge: decomposition rules and operator definitions, each of these tools can
be used with each of these represent ations. Thus there are four types of tools:

— staticrule analysis toals;

— datic operator analysis tools;
completion rule analysis tools; and
completion rule analysis tools.

For cach type of tool, it is possible to performm the analysis using propositional
or fall predicate checking. in propositional analysis, all actions and goals arc
considered optimistically only for the predicate or goal name. For example, when
considering whether an operator could achieve a specific fact, " (radiometrical -
corrected ™ilel)”, optimistic treatment means that any effect or initial state fact
with the predicate "radiometrical ly-corrected” can be used. When considering
whether an eflect |, ” (radiometricall y-corrected ?filel), deletes a protected fact
" (radiometrically-corrected ile2)”, one presumes that the arguments to the
predicate can be resolved such that the conflict does not occur. Therefore the
effect is not considered to delete the fact. The propositional analysis is used as
a fast checking component to catch simple errors when debugging a knowledge
Last. The full static analysis is useful but restricted to more batch-like analysis
due to it's computational expense.

3 Static Analysis Tools

3.1 Static Analysis Tools for Task Reduction RRules

Static analysis tools analyzc the knowledge base to determine if pre-specificed
[)roblcm-classes arc solvable. ‘1 'he static analysis technigues can be used in two
ways. 1. fast run-time checking using propositional analysis (called propositional

as dictated by goal or procedure decompositions. M VI uses this approach of
hierarchical decomposition to refine theinitial skeletal planinto a more specific
plan specialized based on the specific current. goals and situation. This allows
the overal problem decomposition to be influenced by factors such as the pres-
ence or absence of certainimage calibration files or the type of instrument and
spacecrafi used to record the image. For example, geometric correction uses a
model of the target object to correct for variable distance from the instrument
to the target. For VOYAGER images, geometric correction is performed as part
of the local correction process, as geometric distortion is significant enough to
require immediate correction before other image processing steps can be per-
formed. However, for GALILEO images, geometric correction is postponed until
the registration step, where it can be perforined more efliciently.

This decomposition-based approach to skeletal and hicrarchical planning in
MVP has severa strengths. First, the decomposition rules very naturally repre-
sent the manner in which the analysts at tack the procedure generation problem.
Thus, it was a relatively straightforward process for the analysts to articulate
and accept classification and decomposition rules for the subareas which we have
implemented thus far. Secoud, the notes from the decomposition rules used to
decompose the problem can be used to annotate the resulting plan to make the
output plans more understandable to the analysts. Third, relatively few prob-
lem decomposition rules are easily able to cover a wide range of problems and
decompose them into much smaller subprobler ns.

2.2 Operator-based Planning inMVP

MVP represents lower level proceduralinformationinterms of classical planning
operators. These are typical classical planning operators with preconditions, ef-
fects, conditional effects, universal and existential quantification allowed, and
with codesignation constraints allowed to appear in operator preconditions and
cffect conditional preconditions. For reasons of space constraints the operator
representation is only briefly described here. (for a good description of a classi-
cal planning operator representation similar to ours see [1 5]). g'bus, an operator
has a list, of parameter variables, a conjunctive set of preconditions, and for each
effect (which is a conjunct) there is a (possibly null) set of preconditions.

Opcrator
Paramcters: variable*
1’reconditions: 1°rec =1rop*
Teffects: [Effecti = Prop* when Cpreci = Prop*]*

“he above operator has the semantics that it can only be executed in a state in
which al of the preconditlions Prec are true. And when executed, for each effect
set, if all of the conditional preconditions Cypreci arc true in the input st ate, the
cflect Fffecti occurs and all of the effects arc true in the output state.

A description of the GALSOS operator is shown below.

operator GALSOS
:parameters ?infile Zubwe 7calce

static rule analysis); and 2. ofl-linc kllowlcdgc-base analysis to verify domain
coverage (called full static rule analysis). In our knowledge base developient
and refinement framework, the knowledge base is dividedinto a set. of problemn
Spaces.

A problemspace consists of a set of allowable sets of input goals or highlevel
tasks and a set of operational goals, facts,or lowu-1cvcl tasks. Inthe case of
staticrule analysis, the analysis process isto verify that dl legal sets of input
goals can be reduced into operational goals/f cts/tasks. The set of allowable
input goals is formally specifiedinterms of logical constraintson a set of goals
produced by the interface. For example, | :elow we show a simplified problemn
space description for the navigation probles n space.

These problem spaces represent a set of contexts in which the decomposition
planuner or operator planner is attempting t o solve a general class of problems.
Decomposing the overall hroblem solving process into these problem spaces and
analyzing each in isolation dramnatically reduces the complexity of the anaysis
process. Of course, thisintroduces the possibility that the knowledge base anal-
ysis is flawed duc to a poor problem decomposition. Unfortunately, we kuow of
110 other way aroundthis problemn .

Input goals are al combinations of:

(attempt-to-FARENC iles) (automatch?files)

(tnanmatch ?files) (carve-verify ?files)
(clisl,lay-alltolilatcll-rcsicll,al-error ?files) (clisl,Ityy-1,1al,]l,atcl,-r{:sicl{, al-error ?{iles)
(update-archival-sedr ?files)

Subject to the constraint that:

=((attempt-to-FARENC ?files 7files) and (automa tch ?files))

-,(carvc-verify ?files) or (attempt-to- FARENC ?files)

~(display-autor natch -residu al-error ?files) or (automatch 7files)

—(display-m amnatch-resid val-error ?files) or (iranmatch ?files) Generally, the allow-
able sets of input goals arc of the form “al combinations of these b goals except
that goald and goal3 arc incomnpatible, and that every timne goal 2 is selected
goa 1 must have this parameter...

The output legal set of goals/facts/tasks arc defined interms of a set of op-
crational predicates. For example, in the relative navigation example used above
has the operational predicates: construct-om-1 natrix, and display-om-error.

This means that any goal/activity/fact produced using one of these predi-
cates is considered achieved. Static rule analysis runs the rules on these allowable
combinations and verifies that the decomposition rules cover the combinations
(this corresponds to exhaustive testing of the task reductionrules). As described
in Scction 2.1, there are several types of constraints used inthe task reduction
rules. Some of these constraints do not make sense for a propositional analysis,
how constraints are handled in the propositional anaysis is shown below.

The principal difference between the pr o) ositional and non-propositional
cases is that when predicates arc transformed to the propositional case, con-
straint resolution optimistically presuines variable assignments will rernove con-
flicts. For example, consider the plan and reduction rules shown below.

Table 1. Propositional vs. Full Constraint Handling

[Constraint type|Propositional Casc[Full Casc|
| codesignation | ignored | tracked
ot-present. |~ ignored | tracked |
propositional tracked
| ordering | tracked | tracked
| “protection | ignored | tracked

StaticRuleAnaly ze(input-goals, operational-goals, rules)
initialize Q = (goals= inpul-goals, constraints= {})
sclect a planP from Q
for each plan 1* produced by reducing a goal in 1’ using a
task redaction rulew. constraints as below
1 F 1¢ contains only operational goals return SUCCESS
ELSE add " to Q and continuc

Fig. 1. Static Rule Analysis Algorithm

Planl: activities: (foo ¢21G) (bar ¢216) constraints:
P’lan2: activities: (foo c216) (bar ¢211) constraints:.
Reduction Rulel: if present: (bar ?a) not-present: (foo 7h)
Reduction Rule2: if present: (bar 7a) (foo ?a)

In the propositional case, both rule] and rule2 apply to both planland plan2.
In the full case, rule 1 does not apply either planlor plan2.Inthe full case rule2
applies to planl but docs not apply to plan2. Note that in the propositional
case, in order to presume that variables resolve optimistically, the analysis pro-
cedure need not compute dl possible bindings. Rather, the analysis procedure
resolves present constraints by presuming matching if the predicate matches
and by ignoring not- present constraints (and others as indicated above). To
further illustrate, consider the following example from the MV1 domain. The
input goals, relevant decomposition rules, and operational predicates are shown
below.
Input Goals: (automatch files) (inanmatch ?files) (display-man matchi-error ?files)
Decomposition Rules:
Rulel LIS (automatch Xl) (manimatch 701) RYS (construct-om-mat rix ?f1 auto-man-
refined)
[{ulc21,11S (display-manmatch-crror 7f2) present (automatch 7£2) (manmatch 7£2) RHS
(clisplay-ol,]-error 7f2auto-man-refined)
Operational Predicates: construct-om -matrix, display-omn- error
In both the propositional and full static rule analysis cases bothrules would
applyinthe analysis. Thus,bothanalyses would indicate that the input goals

can be reduced into operational facts/activitics.

3.2 Static Analysis Tools for Operator-.hascx] Planning

The static analysis techniques can also be applied to the MVIP’s operator-based
planner component. Thig is accomplished by gencralizing the planning agorithm.
Again, as with the static rule analysis, the static operator analysis is considering
a general class of problems defined by a problem space. As with the static rule
analysis, a problem space defines an allowable set of goals and aset. of operational
predicates which are assumed true in the initial state.

Inthe propositional static operator analysis case, in order to treat the domain
theory optimistically, we must assume that al protection interactions can be re-
solved by variable assignments. Because of the al »sence of protection constraints,
the propositional operator static analysis corresponds to the propositional rule-
based static analysis. An operator with preconditions P and effects - maps onto
a rule with LHS 1’ and RHS Ii. Conditional ¢ ffect extend analogously.

The non-propositional static analysis case is handled by modifying a stan-
dard operator-l)ascd planner. The planner is changed by adding an achievement
operation corresponding to presuming any operational fact is true in the initial
state. We are currently investigating using more soplisticated static analysis
teclimiques to detect more subtle cases where goals are unachievable [7, 16]. The
full (e.g. non-propositional} operator static analysis algorithm is shown below.

StaticO perator Analyzelull(input, operational, operators)
initialize plan queuc Q to (goals= input, constraints=)
sclect @ plan 1’ from Q
for each plan 1 produced by achieving a goal Gusingthe following methods:
1. use an existing operator in the plan to achieve G
2. add a new opcrator to the plan to achicve G
3.* if the goal is operational assume it trucin the initial state
resolve conflicts in 1* (protections)
1 I 1" has no unresolved conflicts and no unachicved goals
THEN return SUCCESS
ELSE add 1" to Q and continue

Fig. 2. Static Operator Analysis Algorithm

Figure 4 shows the subgoal trec generated 1,y performing full static analy-
is onthe operator planner problem space defined by: Input Goals: (compute-
om-matrix 2l manmatch) (updat c-archival sedr ?fl manmatch) and Operational
Predicates: project, initial-predici-source.

s pteom patpa— -~ - Ao
OMCOFk2
o ’7
resje

—
Tiepint fite eIl e Bl bst wz‘

]MAHKA CH OLLCAMI’AP

nr.»\mmpp.n ,,, Sl b

pr/ / projed
Bll ®1S
srude o v r\ ap paiic
MOS PLOY&zopl-:(crade

.\1r \n..,\
la "NAV\ .

waiv-file- il
fivtsne T COMNSTRUCT MOSAIC FILB LIST

oupL / ot
J\ I SHADO WED . oparatx
project yivgardined - Yot level goal
eperatar Raboy initial stala satshod oundite
nonnal Opmatabin Prcondin mnn\-shedlryohsd
Rws Are dhav, o Oprulox pracurbiins - eftuds

|nll n

initiad ppred

peamcadit o

Fig. 3. Subgoal Graph Indicating Static. Operator Analysis for Navigation Goals

4 Completion Analysis Tools

The sccond type of knowledge base development tool used in MVP is the comple-
tion analysis tool. Inmany cases, a knowledge cugineer will construct a domain
specification for a particular VICAR problem, test it out on known files and
goal combinations. T'wo possible outcomes will occur. First, it is possible that
the domain specification will produce an invalid solution. Second, it is possible
that the planner will be unable to construct a solution for a problem that the
expert believes is solvable.

In the case that the planner constructs an invalid solution, the knowledge
engineer can use the inconsistent part of the solution to indicate the flawed
portion of the domain theory. For example, suppose that the planner produces
a plan consisting of steps ABCD, but the expert believes that the correct plan
consists of steps ABCSD. In this case the knowledge engineer can focus on the
underlying reason that Sis necessary. S must have had some purpose in the plan.
It inay be needed to achieve a tol)-level goa G or aprecondition I of A, 13, or C.
Alternatively, if the ordering of operators or variable assignimnents is not valid in
the produced plan, the knowledge engineer can focus on the protection or other
constraint which should have been enforced.

The second possibility is that the domain specification fails to allow the de-
sired solution, For example, the expert believes that the plan ABCID should
achieve the goals, but the planner fails to find any plan to achieve the goals.
I this case, detecting the flawed part of the knowledge base is more difficult,
because it is difficult to determine which part of the domain specification caused
the desired output plan to fail. Inmanually debugging these types of probleins,
the knowledge engincer would write out by hand the plan that should be con-
structed. The knowledge enginecr would then construct a set of problems, cach
of which corresponded to a subpart of the failed complete problem. For exam-
ple, if afailed problem consisted of achicving goas A, B, and C, the knowledge

cngincer might try the planner on A alone, B alone, and C alone, to attempt to
isolate the bug to the portion of the knowledge base corresponding to A, 13, or
C, correspondingly.

Completion analysis tools partially automate this tedious process of isolating
the bug by constructing subproblemns. T'he completion analysis tools allow the
decomposition or operator-bascel planmer °to construct aProof with assumptions
that a smal number of goals or subgoals can be presumed achievable (t ypically
only one 01 two)”. By sceing which goals if assumable, make the problemsolvable,
the user gains valuable information about where the bug lies in the knowledge
base. For example, if a problan consists of goals A, B, and C,and the problem
becomes solvable if B is assumed achievable, the bug is likely to be in the portion
of the knowledge Last relating to the achicvement of B. Alternatively, if the
problem is solvable when cither B or C is assuined achicevable, then the bug
likel y lies inthe interaction) of the operators achieving 13 and C. The completion
analysis tool is used by running the modified planner algor ithin until either: 1.
a resource bound of the number of plans expanded is reached; or 2. there are

no more plans to expand. The completion: analysis algorithm for the reduction
planner is shown below.

sonewteon melp v — - Wy anhivdSSPR

OMCOk2

tiepoim-file project nora o file Bl pusdie-file Bt langad
/_,un.muq OLLCAMPAR
re [y ned overlap s et il bt ,
project Proje
BDJEIS
erude ovgrlap pains
MOSFLOT consfacticrmds
defoult nav
SNAY
\ e A it
)'“"'"' instial predi, e, - COUSTRYCT MGSAIC FILE LIST
oL / ohect
progect | SHADOVIED = qmm "
e 5 . = oprlovel g
operalor f.l{dgﬁm - ;‘Zlml sule salmfod oonditam
™ operalor peocondinn satisfied by effoct

1rial
Woro are deawts from Ggoradur procortilons 1o opsstatina 10 etects
procondtnn

Fig. 4. Subgoal Graph indicating Static Opcrator Analysis for Navigation Goals

% In the completion analysis for both the reduction planner and the operator-l,aqccl
planner there are choice points in the scarch in ordering plans in the search queue.
In both cases, we use standard heuristics based on the number of outstanding goals
and plan derivation steps so far. However, the static analysis techniques would work
will any appropriate heuristic for this search choice.

"The number of goals assumable is kept sinall because allowing the planner to assume
goats dramatically increases the search space for possible plans. 1t effectively adds 1
to the branching factor of every goal achicvement node in the scarch space for the
plan

CompletionReductionPlanner (input, operational, rules)
initialize Q = (goals= input, constraints:=, assumptions= O)
1}* resource boundreturn SO1,U°1'101VS
F1.SE select a plan P from Q
for each plan 1“ Producedby1educing 1’ using a task reductionrule
11I¥ the constraints in 1* arc consistent
IF" 1 contains only operation gosh/activities
THEN add 1“to SO1,LJ1'1ONS
ELSE add 1 to Q and continue
ELSKE discard 1“
for each plan 1* produced by presuming the current goal achieved/operatio y4)
1k 1* contains only operation goals/activities
THEN add 14 to SOLUTIONS
ELSE increment NumberOfAss umptions(1”)
1" NumberOfAssuinpt ions(P’) < bound
THEN acid 1" to Q

Fig. 5. Completion Analysis for Reduction Rules

In the operator-basccl planner, completion analysis is permitted by adding
another goa achicvement method which corresponds to assuming that the goal
is magicaly achieved. The completion analysis operator planner is then rutuutil
cither 1. aresource bound of the nmumber of plans expanded isreached;or 2. there
areno more plain to expand. All solutions found are then reported back to the
user to assist in focusing on possible areas of the domain theory for refinement.
The basic completion analysis algorithm for the operator planner is shown below.

CompletionOprcratorPlanner (input, initial-state, operators)
initialize Q == (goals= input, conslraints=, assumptions=0)
11 resource bound exceeded
THEN return SOI,1J 1'10NS
ELSY select aplan 1’ from Q
for each plan 1* produced by achieving a goal using the following tnethods:
1. use existing operatorin the plantoachieve the goal
2. add a new operator to the plan to achieve the goal
3. usc theinitial state to achicve the goal
4.* if the number of goals already assumed in I is less than the bound
assume the goal t1ucusing completion analysis; the nummber of assumptions in
the hew plan is 1 more than the nuinberin 1’ resolve conflicts in 1* (protections)
1K 1% has no unresolved conflicts and has 110 unachieved goals
THIENadd 1 to SOLUTIONS
ELSI acid 1 to Q and continue

The main drawback of the completion analysis tools is that they dramatically
increase the size of the search space. Thus, with the completion analysis tools,
wc provide the user with the option of restricting the types of goals that can
be presumed true. Currently the user can restrict this processin the following
ways:

allow only top-level (problem input) goals to be assumed;

allow onlygoals app caring in a specific operators preconditions to be as-
sumed ;

alow goal rclating to an operator (appearing in its precondition or cffects)
to be assumed; and

only alow certain predicates to be assumed.

Thus far, we have found these restriction mecthods to be fairly effective in focusing
the search. Note that allowing certain goals tobe presumed true corresponds to
editing the problem definition (or domain theory) numerous times and re-running
the planner. For example, allowing a single top-level goal to be assumed true for
a problem with N goals corresponds to editing the problem definition n times,
each time removing one of the to])-level goals and l‘c-l‘unning the: plannor each
time. Allowing a precondition of an operator to be suspended corresponds to
runuing the planner on the originial problem multiple times, each time with a
domain theory that has onc of the operat or preconditions removed. Manually
performing this testing to isolate an error quickly grows tiresome. Furthermore,
if multiple goals arc allowed to be suspended, the number of edits and runs
grows combinatorially. The completion analysis tools are designed to alleviate
this tedious process and to alow the user to focus onrepairing the domain theory.
As a side cfleet, running the planner only once is also comnputationally more
efficient than running the planner multiple times. This is because the planner
need explore portions of the search space unrelated to the suspended conditions
fewer times.

Thus, the completion analysis techniques are generally used in the following
manner. MVIP automatically logs any problems unsolvable by the task reduction
planmer (unreducable) or Olmator-based planner (no plan found). The user then
specifies that one of the tol}-level goals may be suspended (any one of the top-
level goals is a valid candidate - the planner tries each in turn. The completion
planner then finds a plan which solves al but one of the top-level goals - focusing
the user on the tol)-level goal which is unachievable. The user then determines
which operator Q1 that should he achieving the goal, and specifies that the com-
pletion planner may consider suspending preconditions of 01, The completion
analysis planner runs and determines which precondition I'1 of O1is preventing
application of this operator. Next, the user determines which operator 02 should
be achieving this precondition 1 ‘1 of 01, and the process continues recursively
until the flawed operator is found. For examnple, it inay be that a protection can-
not be enforced, thus preventing a precondition I’1 from being achieved. In this
case, supposc another operator 02 should be able to achieve I’1. But suspending
its preconditions dots not allow the problem to be solved. This might hint to
the knowledge engineer that the problem isin the protection of 1'1 from 02 to
01. AHernatively,it may be that no operator has an cflect that can achieve 1
(perhaps the knowledge engineer forgot to define the eflect or operator). Or that
the effect has a different number of arguments, or arguments in a different order,
or arguimnents of a diflerent type. These typres of bugs can be easily detected once
the bug has been isolated to the particular operator. Another possibility is that a

conditional effect that should be used has the wrong conditional preconditions.
Again, once the bug has been 11 aced to a particular operator, the debugging
process is greatly simplified.

In order to further explain how the completion analysis tools are used, we now
describe a detailed examnple of how the completion analysis tools are used. The
graph below inFigure G illustrates this process from an actual debugging episode
which occurredin the developinent of a portion of the planning knowledge base
‘relating to a problem called relative navigation . Fach of the following steps
in the debugging process is labeled 1 if the planner performed the step; U if the
user/kllowlcdge engincer performs the step;or Cif the completion analysis too]
performs the step.

1. (1) The planner is unable to solve the original problem.

2. (U) The user initiates the debugging process by invoking the operator-hased
completion analysis tool specifying that one top-level goal may be suspended.

3. (C) The completion planner constructs a plan achieving all of the goals but the
LoJ,-level goal of (compute-om- matrix ?om-matrix ?file-list "file-list).

4, (U) The user then determines that the OMCOR2 operator should have beenable
to achicve the goal (compute-om-matrix Pom-matrix ?file-list ?file-list). The user then
continues the debugging process by invoking the completion analysis tool specifying
that a precondition of the OMCOR2 operator may be suspended.

5.(C)Inresponsc to the user request, the completion planner finds a plan achieving
all goals exceptthe OMCOR2 precondition (tiepoint-file ?tp ?file-list manmatch).

6. (U) The user then detertnines that the precondition (tiepoint-file 7Lp ?file-list
manmatch) should be achieved by the MANMATCII operator, and invokes the ope -
ator completion analysis tool allowing suspension of one of the preconditions of the
MANMATCI 1 operator.

7. (C) The completion planncer then finds a plan achieving all goals but the pre-
condition (refin ed-overlap- pairs 7rop- file ?file-list) of the operator MANM ATCIL

8. (U) The user then determines that the precondition (refined-overlag »-pairs 7rop-
file 7file-list) should have been achieved by the EDIBIS operator and invokes the op-
erator completion analysis tool allowing suspension of an EDIBIS precondition

9. (C) The completion planner finds a plan achieving all goals but the precondition
(crude-overlap- pair ?cop-file ?file-list)of INDI1S.

10. (U) The user thendetermines that this precondition(crude-overlap-pair 7cop-
file ?{ile-list) should have, been achieved bythe h40S1'1,0'J’-collstrtict-c]lIcle-1lav-filc.
This results inanother invocation of the completionanalysis tool allowing suspension
of a precondition for MOSP1,OT-con struct-crude-nav-file.

11.(C) The completion analysis tool then finds a plan achicving all goals but the
8 Note that this is the operator portion of the knowledge base relating directly to the

task reduction rules shown inthe example for statici ale analysis.
*For theinterested reader, mavigation of the image is the process of determining the

appropriate transformation matrix 10 map cach pixel from the 2-dimensional (linc,
sample) of the image space to a 3-dimensional (x,y,7) of some coordinate object space
(usually based onthe planet center of the target being imaged). Relative navigation
corresponds to the process when determining the absolute position of cach point is
diff icult to compute so that the process focuses on determining the correct positions
of each point relative to other points inrelatedimages.

precondition (latlon 7imnf ?lat ?lon) for the oprerator MOSP1.0T-construct-cr ude-nav-
file.

12.(U) At this point, the user notices thatiheconstructed plan for achieving the
goals has assumed the instantiated goal {latlon $zoliddIr-file ?lat ?lon). This immedi-
ately indicates the error to the user because theuser is expecting a file name as the
second argument of the latlon predicate ',

B ——— L

1. suspend top-levat goal :
2. suspend OMCORZ preconditions @\[L’&p ey — —- - —- Walc-anchivid S
3. suspend MANMATCH preconditions ‘R\ . e
4. suspend EDIBIS praconditions MO
5. suspand MOSPLOT.. pmcondrl}om/47 “2
tepoini-file pwjmm\'-ﬁ@h.\mir-ﬁlc»lhl targit
A LA /
GLLCAMFPAR
project
@-nvrh]»lmin
MOSPLOT-cobsfruct-crude
defanti-nav
SUAY—__ N
- mosaie-file-ist
on initial predict source - COUSTRUCT MOSALC FILE LIST
GLL_LL slfect
v | SHADOWED = operakar
prject undedines = top fevel goat
opetutor Ralics = initial state satisfied condition
nonqal = operalur pracondition salishad by stiect
lines are drawn) froni operator preconditions to oparalofs to eflecls
precondition

Fig. 6. Subgoal Graph for Completion Analysis Debugging

Unfortunately, we have as of yet not been able to determine any heuristics for
controlling the! usc of these completiontools that alows for more global search
or allows for less user interaction.. However, in their current form, the comy -
tion analysis tools have proved quite uscful in debugging the MVP radiometric
correction and color triplet reconstruction knowledge base.

4.1 Impact of Debugging

In order to quantify the usefulness of the completion analysis tools, we collected
data from a 1 week phase of domain theory development for the relative navi-
gation portion of the domain theory. | Juring this weck, we identified 22 issues

“This is because the latlon goal is designed to refer to a specific image file (e.g.,
1126.IMG). Correspondingly, the planning operators that had been defined to acquire
inforiation such as latlon presumed actual file names. Unfortunately, &~Iniclcllc-file
refers to a VICAR variable which will be bhound to an actual file name only at the
time that the VICAR script is run (i.e. whenthe plan is executed). Thus, the bug lies
in the mismatch between this precondition and the operators which can deterinine
latlon information for a file. This bug was then fixed by defining operators which
could utilize the, VICAR variable inforimation a runtime and perform the correct
steps to compute the needed latlon information.

raised by a domain expert analyst which at first guess appeared to be primarily
in the decomposition roles or operators. For 11 of these 22 problems (selected
randomly) we used the debugging tools in refining the domain theory. For the
other 11 problems we did not use the debugging, tools. When tools were allowed,
we estimated that the tools were applicablein 7 out of the 11 problems. These
7 problems were solved in an average of 10 minutes each. The other 4 took on
average 41 minutes. The total 11 problems where the tools were used took on
average 21 minutes each to correct. Inthe 11 problems solved without use of the
tools, after fixing all 11 problems, we estiated that, in 6 out of the 11 problemns
that the debugging tools would have helped. These 6 problems took on average
43 minutes each to solve, The remaining 5 problems took on average! 40 minutes
to solve. The sccond set of 11problems took on average 42 minutes to solve.

‘1'able 2. Fmpirical limpact of Completion Analysis Tools

Set Tools |Average| Tools Average[Overall Average
Applicable] Time Nott Applicable] Time

Tool /11 |10 win. |~ T 4/11 41 min. 21 min.

No Tool] 6/11 43 min. 5/11 40 min. 42 min.

5 Discussion

One area for future work is development of explanation facilities to allow the
user to introspect into the planning process. Such a capability would allow the
user to ask such questions as “ Why was this opcrator added to the plan?” and
“Why is this operator ordered after this operator?”; which can be answered
casily from the plan dependency structure. More cliff icult (but also very uscful)
questions are of the form “Why wasn’t operator O2 used to achieve this goal?”
or “Why wasn’t this problein classified as problem class I'?". We are currently
investigating using completion analysis tools to answer this type of question. The
completion analysis techniques are related to theory refinement techniques fromn
machine learning [14, 9]. However, t hese technigues presume multiple examples
over which to induce errors. Additionally, reasoning about planning operators
requires rcasoning about the specialized planning knowledge representations and
constraints. This paper has described two classes of knowledge base development
tools. Static analysis tools alow foreflicient detection of certain classes of un-
achicvable goals and can quickly focus user attention on the unachievable goals.
Static analysis techniques can aso be used to verify that domain coverage is
achieved. Completion analysis tools alow theuser to quickly focus on which
goals (or subgoals) arc preventing the planner from achieving a goa set believed
achicvable by the knowledge base developer. These tools are currently in use and
we have presented empirical evidence documenting the usefulness of these tools
in constructing, maintaining, and verifying the MV P planning knowledge base.

References

1, Chien, S.: Using Al Planning Techniques to Automatically Generate linage Process-
ing Procedures: A Preliminary Report. Proc. A1PS94, Chicago, 11,, June 1994, Pp-
219-224.

2. Chien, S.: Automated Synthesis of Complex Inage Processing Procedures for a
ljargc-scale lmage Database. Proc. First 1 BRI Int. Conf. on Jiage Processing,
austin, TX, Nov 1994, Vol 3 pp. 796-800.

3. Chien, S., Estlin, “J’., Wang, X., Govindjee, A., Hill,R.: Automated Generation
of Antenna Operations Procedures: A Knowledge-based Approach. Subinitted to
Telecommu nications and Data Acquisition.

4. Chien, S, Estlin, *J., Wang, X.: Hierarchical Task Network and Opscrator-based
Planning: Competing or Complementary. J| ’l, Technical Document 1)-13390 Jet,
| *ropulsion Laboratory, California 1 nstitut e of Technology, January 1996.

5. Davis, 1{.: Interactive Transfer of Fxpertise: Acquisition of New Inference Rules.
Artificial Intelligence 12 (2) 1979, pp.121-1 57.

6. DesJardins, M.: Knowledge Development Methods for Planning Systems. Working
Notes of the AAA1 Iall Symposium on Learning and Plant ing: On to Real Appli-
cations, New Orleans, LA, Nov 1994, pp. 34-40.

7. Eizioni, 0.: Acquiring Search Control Knowledge via Static Analysis. Artificial In-
telligence, 62 (2) 255-302, 1993.

8. Gil, Y., Tallis, M.: Transaction- based Knowledge Acquisition: Complex Modifica-
tions Made Basier. Proc. of the Ninth Kunowledge Acquisition for Knowledge-based
Systems Workshoyp, 1995.

9. Ginsberg, A., Weiss, S., Politakis, P.: Automatic Knowledge Based Refinement for
{classification Systems. Artificial Intelligence, 35 pp. 197-226, 1988.

10. lwasaki, Y., Fricdland, P.: The Concept and Implementation of Skeletal Plans.
Automated Reasoning 1, 1 (1985), pp.161-208.

11. Laansky, A.: Localized Planning with Diverse Plan Construction: Methods. '1'R 1'1A-
93-17, NASA Ames Rescarch Center, Junc 1993.

12. LaVoic, 8., Alexander, D)., Avis, C., Mortensen, | 1, Stanley, C., Wainio, 1,.: VICAR
User’s Guide, Version 2, JPL Internal Doc.1)-4186, Jet Propulsion Laboratory, Cal-
ifornia Inst. of Tech., Pasadena, CA| 1989.

13. O’Keele, R., O’Leary, D.: Fixpert System Verification and Validation: A Survey
and Tutorial. Al Review, 7:3-42, 1993.

14. Mooney, R., Ourston, D.: A Multistrat egy Approach to Theory Refinement. iy, Ma-
chine Learning: A Multistrategy Approach, Vol. 1V, R.S. Michalski and G. Teccuci
(cds.), pp-141- 164, Morgan Kaufinan, San Mateo,CA, 1994,

15. Pemberthy, J., Weld, D.:CPOP: A Sound Complete, Partial Order Planner for
ADIL. Proc. of the Third Int. Conf. on Knowledge Representation and Reasoning,
October 1992, PP 103-114.

16. Ryu, K., Irani, K.: Learning from Goal Interactions in Planning: Goal Stack Ayal-
ysis and Generalization. Proc 1992 National Conferenceon Artificial Intelligence
(AAA192), pp. 401-407,

17. Stefik, M. Planning With Constraints (MOLGEN: Part 1). Artificial Intelligence
16, 2(1981),pp. 111-140.

18. Wang, X.: Learning by obscrvation and practice: Ay incremental approach for plan-
ning operator acquisition. In Proc. 1995 Intl. Conf. on Machine Learning (M 1.95).

This article was processed using the WI3X macro package with LLNCS style

